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Abstract. Strong relationships among dimensionless properties of braided streams indicate
that similarity is preserved in streams with the same average number of channels but of differ-
ent sizes. The degree of braiding in streams, conveniently measured by the average number
of channels bisected by lines crossing the channel, increases with the product of discharge and
gradient, but decreases with higher variance in discharge. A random walk simulation model
of braiding duplicates many of the numerical relationships observed in natural streams, sug-
gesting that most of the downstream variation in the number of channels in braided streams
is explainable by local fluctuations in discharge and sediment in transport, as opposed to large-

scale factors such as valley constriction.

INTRODUCTION

The planmmmetric properties of single thread
streams have received extensive quantitative
study, especially of their hydraulic geometry
and meandering behavior. Some quantitative
studies of stream meandering have been descrip-
tive [Leopold and Wolman, 1957, 1960; Dury,
1965; Speight, 1967; Chang and Toebes, 1970],
some have related meandering behavior to hy-
drologic factors [Schumm, 1968, 1969; Bagnold,
1960; Chang and Toebes, 1970], and some have
proposed theoretical or simulation models of
stream meandering [Langbein and Leopold,
1966; Thakur and Scheidegger, 1968; Scheideg-
ger, 1967; Surkan and Van Kan, 1969]. Numer-
ical properties of braided streams have received
much less attention because of the comparative
rarity of highly braided streams and because of
the lack of obvious quantifiable properties. The
hydrological factors controlling braiding in
streams have been discussed by Leopold and
Wolman [1957], Fahnestock [1963], and Brice
[1964].

Leopold and Wolman [1957] proposed the
division of stream patterns into single thread
channels (straight or meandering) and braided
streams with multiple anastomosing channels
(anabranches). This distinction is arbitrary be-
cause most meandering or straight streams have
a few islands along their length, and braided
streams differ among themselves in the average
number of channels at a point. The continuum

of channel patterns from unbranched to highly
braided has been quantified by the braiding in-
dex introduced by Brice [1964, p. D27], which
is the ratio of twice the length of the islands in
the reach of stream divided by the length of the
reach. Although braiding in some streams ap-
pears to be best described as islands in a single
channel (Figure la), others are better cousid-
ered as anastomosing channels (Figure 15). The
second approach is used in this paper, which
uses the numerical properties of the channel seg-
ments rather than those of the islands.

This paper reports four interrelated studies:
(1) the topology of braided streams, (2) quan-
titative relationships between several properties
of braided streams measurable from maps, (3)
relationships between the degree of braiding and
regime factors of discharge, sediment transport,
and gradient, and (4) random walk simulation
studies of stream braiding.

TOPOLOGY OF BRAIDED STREAMS

A braided stream is characterized by channel
segments (anabranches), nodes where segments
branch or join, and islands enclosed by segments
(Figure 1). If a braided stream is sectioned by
two arbitrary, crosscutting lines subject to the
restrictions that the lines are far enough apart
that no segment is crossed by both lines and
that neither line passes directly through any
node, then nodes, islands, and segments are nu-
merically related. The following definitions are
made (Figure 1):
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Fig. 1. Features of braided streams. (¢ and b) Channel with numerous small islands is
contrasted with anastomosing channels on the Kuskokwim River, Alaska. Small channels are
omitted. (¢) Topologic definitions on braided streams. (d) Conventions in measurement on
braided streams. E and N are defined in notation. If one or more sections in sequence possess
only a single segment (section 3, case b), the one-channeled section(s) are grouped with the
first higher numbered section with multiple segments (section 4). Braids crossing the end of a
section are included in the data for the data for the section of next higher number for counting
and length measurements (cases a and c), or ignored if they leave the measured length of
stream (case d). Channels e and f, which do not reunite with the stream, were excluded, and
were not considered to have created a node at their junction. Segments that are twice inter-
sected by a crossline are counted only once (case g). (e) Simulated braided stream (model 1,
step width 3, bias 0.75).
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¢, total number of segments, including
segments lying entirely within the section
(entire segments) and those bisected by
the lines bounding the section (bisected
segments) ;

e, total number of bisected segments;

¢, total number of entire segments;

1, total number of unbisected islands within
the section;

p, total number of islands bisected by the
bounding lines;

n, total number of nodes within the section.

The topological theory of networks shows that
the following relationship is always true in a
planar network [Berge, 1962, p. 27; Kansky,
1963, p. 10]:

1=t—(mn+e + 1 (1)

The number of islands ¢ is termed the cyclomatic
number in graph theory. In addition, the fol-
lowing two relationships are always true:

e=7p-+ 2 (2)
and

c=t—e 3

The joining of more than three segments at a
node is rare in natural braided streams. If no
more than three join at a node, then two addi-
tional relationships hold

t=1+4 3+ 2 (4

and
n=2+p (5)
If the sample section is long so that 7 >> p then
n 2t (6)

Three topologic indices have been proposed
to measure the degree of connection between
nodes on a planar graph [Garrison and Marble,
1962; Kansky, 1963]

=4+ +1
T 2(n4e —5 @
and
t
B=n-|—e (8
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The alpha index is the ratio of the observed
number of islands to the greatest possible num-
ber of islands for a given number of nodes. The
gamma index is the ratio of the observed num-
ber of channel segments to the greatest possible
number of segments for the given number of
nodes. In a large section of braided stream
where ¢ > p and n >> e, substitution of equa-~
tion 6 into equations 7, 8, and 9 shows that e,
B, and y approach the values %, 1%, and 3, re-
spectively.

INTERRELATIONSHIPS BETWEEN PROPERTIES
OF BRAIDED STREAMS

The quantitative variables include only those
that can be determined from topographic maps;
these include measures of the number of chan-
nel segments, their length and width, and such
properties as channel gradient, and wavelength
and sinuosity of channel meandering (notation).

Twenty-six streams were selected for measure-
ment subject to the following criteria:

1. A wide range in the degree of braiding
among the streams selected, as estimated by vis-
ual appearance.

2. Availability of recent topographic mapping
at a scale of 1:24000 or 1:62500, or detailed
maps at a larger scale.

3. At least one channel traceable along the
stream with measurable width on the map.

4, Absence of large incoming tributaries or
man-made levees and channels.

With the exception of these restrictions, the
streams measured were selected to be as repre-
sentative as possible of streams in the United
States including Alaska, ranging in size from the
Mississippi River to an ephemeral arroyo with
4 square miles of drainage area. (Information
on the streams measured and copies of the data
are available from the senior author.)

Systematic or random effects upon measured
data have probably been introduced in the proc-
ess of map compilation because of the following
factors:

1. Lack of universal criteria for definition of
channels or islands. Brice [1964, p. D31] notes
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that two streams which show a similar degree
of braiding on aerial photographs appear mark-
edly different in degree of braiding on their re-
spective topographic maps.

2. Differences in conditions under which areal
photography was flown. In some phatography,
differentiation between water and land may be
difficult, leading to confusion of islands and sub-
merged bars.

3. Differences in river stage. A rise in stage
may submerge low bars or, conversely, reactivate
ephemeral channels. However, the photography
is likely to have been taken near the median
discharge.

These factors have probably introduced ran-
dom effects and may have systematically affected
average values of stream properties, especially
measures of the number of channels (E and N,
notation). The process of map making is less
likely to be responsible for the observed correla-
tions between stream properties.

Measurements. A typical length of channel
without large incoming tributaries is selected;
this is divided into sections of equal length by
crosslines perpendicular to the main direction
of flow. The length of each section was approxi-
mately two times the average width of the
stream. Each section is then bisected as shown
in Figure 1d. On a tracing paper overlay the
center line for each channel segment is drawn
and the measurements indicated in the notation
list were made on each section and for the
stream as a whole. Several conventions adopted
in measurement are illustrated in Figure 1d.

Analysis of Data. 'Two types of relation-
ships between variables measured from the map
were investigated:

1. Relationships between dimensionless mea-
sures and ratios (notation). The correlations
between these scale free properties involve
those properties of braided streams that are
independent of the size of the stream. Sev-
eral of the scale free variables have a factor of
unity subtracted in the formula; this permits
these variables to equal zero in a single thread
stream (or a nonmeandering stream in the case
of the sinuosity index).

2. Relationships between dimensioned varia-
bles (notation) that reveal the degree to which
the size of a braided stream affects its proper-
ties. Included with these variables are the gradi-
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ent, which is inversely related to the width and
meander wavelength of single thread streams,
and the excess segment index, to investigate re-
lationships between scale free and dimensioned
variables.

Analysis of both scale free and dimensioned
variables was further broken into:

1. Average correlations of variables between
sections within each stream. The correlation co-
efficients between variations in quantitative vari-
ables among the sections within each stream is
computed. The correlation coefficients for each
variable are averaged over the total number of
streams in the sample (26 here), with each cor-
relation coefficient being weighted by the square
root of the number of sections measured along
each stream.

2. Correlations of variations in.the average
properties of the measured streams (between
stream correlations). The measured variables for
each stream were computed by considering the
measured portion of the stream to be a single
long section, except that the variables W and C
were computed by averaging the average values
for each section.

The measured and derived variables were first
plotted versus each other on arithmetic axes. In
many cases these produced curvilinear relation-
ships that became nearly linear when the loga-
rithms of the variables were plotted. Therefore
the logarithmic transforms of all variables were
taken before correlation, implying a relationship
between two variables (e.g., X and Y) of the
form

Y = KX™ (10)

where K and m are constants. This type of re-
lationship is common in hydraulic geometry
[Leopold and Maddock, 1953].

Regression parameters for the four types of
relationships (scale free or dimensioned and
within or between streams) are given in Tables
1 and 2. Note that some quantities were mea-
sured only once for each of the sampled streams,
so that these, and their derivative scale free
parameters, do not appear in the within stream
correlations.

Interpretation. Many scale free parameters
in geomorphology are largely independent of the
size of the phenomenon involved, for example,
number, length, and area ratios by order in
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ad 4% stream networks, and the ratio of the meander
R =0 28 L . . .
IR Ak EE 8% wavelength to the channel width in meandering
e .e"=e 2% :—q-i streams [Leopold and Wolman, 1960, table 1].
e 9 N Several observations suggest that the same may
8ery 8|5 ; *qa;E be true of braiding in streams:
oeoe T % = 'q% E 1. The between stream, scale free parameters
8 8 &= of braiding strongly correlate among themselves,
2L S5 5 i E S despite large variations in the size of the stream
a . —~ =t
—~oo o~ | Y q%; @ (Table 1). .
' bk :. S E 2. The within stream scale free correlations
g 2 a3 (Table 1) are close to those between streams,
o —~ox | mE NS R .
B ®weS § S =% as would be expected if the scale free properties
© <:|> ? Cf Tl = ‘g 5% are independent of scale.
= = .
AR 3. Most of the strong correlations between
@ — TE £ i i i b d
XK IERS | & g5 dimensional properties (Table 2) are due to
. . - . . .
S Ssocooo §'§ CES their having the same units of measurement
‘é’-ii >E<; T%' (miles) ; regression slopes between these prop-
B8 Mg erties are generally near =1.0.
o IO ® =T @
IR Ak S g .
S o 4 =R E However, moderate correlations occur between
-~ . .
g« = the excess segment index E,, a scale free vari-
go ES —— )
o . Eg S8 able, and several dimensional variables (Table
S° S gc,’: 23 2), e.g., the number of channels per mile N,.
3 f’; oM This would not be expected if dimensionless
‘-g‘ g 'gé characteristics of braiding are independent of
TREKkEBRy | Ce 25 the size of the stream. However, these correla-
‘? <=|> coooo _§ E §4 % tions are probably due to the particular selec-
92 %9 tion of streams in this sample. An indépendent
en —d 3
Do Hwmw o | 2° 8 sample of 74 streams resulted in almost no cor-
amone S g &9 lation between E, and N, (Table 3
Somco ‘e | 88 g relation between Z, an 1 (Table 3).
| 28 a7 Two generalizations about braided streams are
& ? & 2 confirmed by this study. Leopold and Wolman
£8 A=88 | % = 1957, p. 48] note that an increase in the num-
3 . o g < » P . . .
T° °T971 58 £9 ber of channels along a stream is associated with
£8® =88 an increase in gradient. A moderate positive
B @ 8?| g s correlation is indicated within streams between
coo o g‘_‘ gg the excess segment index E, and the gradient
Frr o %; év—; ] G (Table 1). Leopold et al. [.1964, p. 292] find
=& &3 2 that braided streams are less sinuous than single
© H -3 D g i .
« =g B B 5 thread streams. The excess segment index E,
°|‘ ; § E% = and the sinuosity index U, are negatively cor-
ig B2 g related (Table 1).
Q [e] M ——
AP~ O H D o5 4 h=1
RUARCR | FG @5 2 BRAIDING RELATED TO HYDRAULIC REGIME
coocoococ | 88 Bg 4§
Loob :2 S 52 ° The correlations reported above allow the pre-
I D E g & diction of several properties of braided streams
Eadfe o prop
55588 = once one parameter of that stream is measured,
§§ 289 € for example, the excess segment index E, or the
EStecos| gEEgegE number of channels per mile N,. However, these
EMERNNNEN | 7 ow-‘iga . D L .
8 38 && g g correlations cannot be used for a priori predie-
E g gé i“"‘a 2 tion of the degree of braiding of the stream.
& g* _g‘«.%"m Braiding evidently occurs under certain condi-
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TABLE 2. Dimensional Correlations

Dependent, Variable

Independent Variable

N, E; G S M C w
Correlation Coefficients

N, 0.64 0.08 —0.49 —0.07 0.39

E; 0.53 0.11 —0.26 ~0.01 0.51

G 0.65 0.07 0.06 —0.09 0.09

S -0.70 0.20 —0.64 —-0.02 0.01

M —0.33 0.43 —0.61 0.68 0.10

C —0.04 0.78 —0.42 0.67 0.84

w —0.34 0.53 —0.63 0.78 0.80 0.82

Fitted Exponents
Ny 0.64 0.88 —0.63 —0.43 —-0.49
E; 0.44 0.47 1.00 0.64
G 0.48 -0.43 —0.61 —0.49 —0.68
S —0.77 —0.94 1.00 1.14 1.25
M —-0.25 0.39 -0.62 0.47 0.98 0.88
C 0.61 —0.37 0.39 0.72 0.77
w —-0.23 0.44 —0.58 0.49 0.73 0.88
Common Logarithm of Muliiplicative Constant

N, —0.58 —-3.90 0.11 —0.62 0.87
E; 1.13 —1.24 —0.87 0.15
G 2.59 .. —1.87 —2.87 —2.06 —1.64
S 0.71 —3.46 —0.49 0.07 1.10
M 0.93 0.65 -3.55 —0.12 0.45 1.28
C 0.61 —3.09 —0.39 —0.66 0.80
w 1.28 0.07 —2.68 —0.79 —1.35 —0.92

For explanation see Table 1.
See notation list for definition of symbols.

tions of water flow, sediment transport, and
bank erodibility [Leopold and Wolman, 1957;
Fahnestock, 1963; Brice, 1964]. Therefore in-
dices of these regime factors might allow the
prediction of the degree of braiding.

Several hydraulic characteristics of 74 streams
throughout the United States were collected
from published reports to determine their rela-
tionship to the degree of braiding measured by
the parameters E, and N, measured from top-
ographic maps. The hydraulic variables include
gradient, bed material size, mean annual flood,
and a measure of the variability of discharge
(notation).

Both simple and multiple regressions were
used to determine the relationships between
braiding and hydraulic regime (Table 3). These
correlations may be compared with the conclu-
sions of other studies:

1. Leopold and Wolman [1957, p. 60] note
that braiding is favored when both gradient and

discharge are high, and single thread meander-
ing for lower values. This is supported by the
present study because the excess segment index
E, increases as gradient and discharge increase
(Table 3).

2. Fahnestock [1963, p. A58] suggests that
high variability in discharge may be associated
with a high degree of braiding, whereas Brice
[1964] finds little association. However, the
multiple regressions indicate an inverse rela-
tionship between E, and the variability of dis-
charge.

Although significant correlations occur between
indices of braiding and the regime factors, the
degree of explanation is low, perhaps owing to
the following criteria:

Differences in mapping procedures. Although
the process of map compilation probably has
little effect upon the correlations between prop-
erties of braided streams (see previous discus-
sion), systematic inclusion or deletion of chan-
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nels affects both of the measures of the degree
of braiding, E; and N,. Use of aerial photo-
graphs and standardized procedures would help
to reduce operator bias (see discussion in Brice
[1964, p. D27-D32]).

The influence of bank erodibelity. Stability
of channel banks, due to cohesive sediment
[Schumm, 1960; Brice, 1964, pp. D32-D35;
Fahnestock, 1963, pp. A57-A58] or to a protec-
tive cover of vegetation [Brice, 1964, pp. D32
D35; Mackin, 1956] reduces channel width and

TABLE 3.

1681

inhibits development of islands. Bank erodibility
is difficult to assess. The type and density of
bank vegetation differs greatly among the sam-
pled streams and is probably an important fac-
tor not accounted for. Schumm [1960] has used
the percentage of silt and clay in the banks to
measure channel stability, However, a separate
regression for 22 streams for which Schumm
[1960, Table 1] had measured the silt-clay con-
tent of the channel banks produced little addi-
tional explanation of the degree of braiding.

Correlations of Braiding and Hydraulic Parameters

Dependent Variable

Independent Variable E; N, Qs R, D qd
Correlation Coefficients*
N, 0.00
Q 0.04 —0.42
R, -0.23 0.14 —-0.20
D —0.02 0.29 —0.36 —0.11
q 0.21 0.27 —0.65 0.13 0.48
Fitted Exponentst
E; —0.28 0.21
N; —0.52 0.60 0.32
Qs v —0.34 -0.23 —0.62 —0.61
R, —0.19 ... —0.17 .. .
D 0.14 —0.21 0.27
q 0.21 0.23 —0.68 0.87
Common Logarithm of Multiplicative Constantt
E; 1.01 —2.70
N,; 4.33 —0.55 —3.14
Q 2.23 2.07 2.38 —0.49
R, —0.45 4.05
D 0.93 3.85 —2.85
q —-0.07 1.59 1.90 2.48
Multiple
Equation Correlation Coefficient

Multiple Regressionsi

0.24 G.lle.ZO

1.9 R~ uG

0.58 R~ 10G-41(Q, %)
0.14 DuQ~u

0.21 D16Q~ 8224
200 (R,~%)(N;-40)G-a
260 E;18N,~-31G~-65

-

-

SIS

Qr

-~ =y 00w

coooooo
K
~hRROO® R~

* Correlation coefficients of =0.20 and =£0.23 are critical values for 909, and 95% levels of significance,

respectively.
t For explanation see Table 1.

i Variables in parentheses are significantly correlated with the dependent variable at a 909, level of
significance. Others are significant at a 95% level of significance,

See notation list for definition of symbols.
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Past hydrologic history. Major floods tend
to widen channels both immediately by lateral
erosion and over longer periods of time by strip-
ping the vegetation from the banks, whereas
channels tend to narrow by growth of vegeta-
tion and deposition of alluvium during periods
with high discharges but only minor flooding
[Schumm and Lichty, 1963]. Thus the elapsed
time since major floods is probably a major un-
controlled factor. Recent changes in climate may
likewise have affected erosion, deposition, and
vegetative growth on stream banks.

SIMULATION MODELS OF BRAIDING

The downstream fluctuation in the number of
channels and other properties of braided streams
might arise either through specific local influ-
ences, such as valley narrowing by exposure of
bedrock or changes in bank vegetation, or on
the other hand it might be due to the nature
of the flow and sediment transport within the
channel. The following three observations sug-
gest that the second of these is most important
in most braided streams:

1. The within stream fluctuations in dimen-
sionless properties are similar to between stream
variations (Table 1). Such regularity would not
necessarily occur if local factors determined the
degree of braiding.

9. Fluctuations through time in number and
areal position of channels correlate with varia-
tions in flow conditions [Fahnestock, 1963, pp.
43-57].

3. Many, and perhaps most, braided streams
flow on alluvium in wide, flat valleys so that
local constrictions and similar large-scale local
factors are probably unimportant.

A braiding pattern appears to develop in
streams through buildup of bars by local de-
position within the channel, probably due. to
areal and temporal variance in flow conditions
and sediment in transport [Leopold and Wol-
man, 1957, p. 53; Fahnestock, 1963, p. 56].
Local diversions of flow during high discharges
may also be important [Brice, 1964, p. 27]. The
factors producing the local variations that in-
duce braiding are probably so numerous and so
rapidly changing that a satisfactory determin-
istic modeling of braiding would be difficult to
construct. However, the braided pattern pro-
duced by these innumerable, small-scale factors,

HOWARD, KEETCH, AND VINCENT

past and present, might be simulated by a ran-
dom process of branching and reuniting. Several
such models are reported below.

Model 1. Stream braiding is simulated by a
random walk through successive generations dur-
ing which the stream grows in a longitudinal
direction (i.e., upstream or downstream). Dur-
ing each generation existing segments extend
longitudinally one step without lateral (cross-
stream) shifting.” At the close of each genera-
tion, channels shift laterally by a number of
steps determined by a probability function de-
scribed below. During these lateral steps chan-
nels may coalesce to form a single channel that
grows longitudinally during the following gen-
eration. Segments may also branch at the close
of a generation.

Both the number of lateral steps and the oc-
currence of branching are randomly determined
by the probability function. The probability of
a stream head taking N lateral steps from its
present position X is assumed to be proportional
to the area beneath a section of a normal curve.
The boundaries of the section are determined by
the average of the positions of the stream heads
(X), the step width (W in units of standard de-
viations), and the bias of the movement toward
the average position (B also in units of stan-
dard deviations). A random normal deviate R
from a normal distribution with mean zero and
standard deviation of unity determines the num-
ber of lateral steps. Using I[Z] to represent the

w=10
B(CX)> -X}=0

-4 -3 2 [ T 2 3
Random Normal Deviate, R
b 3 =2 ~p— .| e 0

e | e 2 = 3
Number of Loferal Steps, N

w=10
BKX>-X) =05

-4 -3 2 B [ T 2 3 3
Random Normal Deviate, R

P 3 e 2 e o e O b | e 2 o= 3 e 4
Number of Lateral Steps, N
Fig. 2. Examples of the probability function
for lateral steps in the simulation of braided
streams.
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integer part of the expression Z, the probability
function is (also see Figure 2)

¥ = {I[(D/W) + 0.5] D20 )
—I[(-=D/W)+ 05 D<O
where
= R + B((X) — X) (12)

The simulation model thus has two adjustable
parameters, B and W, that are specified at the
beginning of the simulation. The bias B must
always be greater than zero, otherwise branch-
ing of chanmels would lead to a continual in-
crease in the number of channels.
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The lateral movement of channels is conducted
according to the following process, with the re-
striction that splitting and coalescing of chan-
nels produces not more than three channels join-
ing laterally at any generation:

1. Channel segments existing at the close of
the generation are examined in a random serial
order. Each segment is initially active. Each
active channel is subjected to the following ac-
tion:

a. The number of lateral steps, positive
(Figure 3, model 1, case b), negative, or zero
(case a), is randomly determined according
to the probability function. However, not all

MODEL |
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Fig. 3. Rules for branching and coalescence of braids. In each box the left-hand diagram
shows the action indicated by the randomly generated number of lateral steps (dotted lines)
and the right-hand diagram shows the action taken. Solid lines show existing channels. Lines
below the row of dots show channels existing during the nth generation, and those above the
(n 4 1)th generation. Circles indicate inactive stream heads.
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steps are taken if the channel encounters an
existing segment, in which case the streams
may join (cases ¢, d, e, and f) or not (cases
g and h) depending on whether this would
violate the three-junction rule. If two seg-
ments join, then both are deactivated (cases
¢, d, e, and f).

b. If the channel is still active, the possi-
bility of splitting is examined by a second
random number of lateral steps; if this sec-
ond lateral movement would be in the same
direction as the first (case 1), or if both are
zero (case i), no branching occurs. A splitting
can only occur if no more than three segments
meet at a point (cases j and k), and the sec-
ond channel cannot unite with another (cases
m, n, and o).

¢. The channel is deactivated.

2. The new disposition of channels produced
by this process is carried through to the end of
the succeeding generation.

All simulations started with a single stream
and were terminated after a specified number of
generations (100 to 200). A typical simulation
is illustrated in Figure 1le.

Models 2, 3, and 4. The simulation rules for
these models are identical to those of model 1
except that the rules for branching and coales-
cence were varied. Model 2 is more restrictive
than model 1 in branching of single channels
(Figure 3, model 2, case 1), but is more liberal
in branching of connected channels in that it al-
lows more than three segments to join at a point
in some cases (cases o and q). Models 3 and 4
have the same rules for branching of single
channels as model 1, but they allow greater free-
dom of coalescence and branching of connected
channels (Figure 3).

Andysis of simulated networks. Simulated
and natural streams may be compared only
through use of dimensionless parameters. The
excess segment index E, is directly comparable
in natural and simulated streams, and variations
in the average value of this index, because of
different combinations of step width and bias
parameters, are used to compare the dimension-
less properties of natural and simulated streams.
Dimensionless combinations of average stream
width, segment length, and number of segments
per length of channel may be measured on sim-
ulated streams as well as on natural ones. The
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following conventions were adopted in measur-
ing these:

1. In the simulation model the choice of lon-
gitudinal and lateral scale is arbitrary. Because
most segments of natural streams are elongated
in the longitudinal direction (Figure 1), the
length of a segment in the simulation model is
defined as the number of generations during
which the segment exists. In such a case the
dimensionless ratio T', = N -S/L equals the aver-
age number of streams bisected in a lateral direc-
tion (i.e., E); braiding in most natural streams
closely approximates this equality (Figure 4).

2. The total width of simulated streams was
taken to be the total number of lateral units
within the two outside segments, including the
outside segments; a single channel has a width
of unity. In natural streams the width of the
main channel M does not vary greatly during
within stream variations in the total number of
channels (Table 2). Therefore the width as mea-
sured above is assumed to be proportional to
the width ratio R.. in natural streams.

3. Average stream width C and the average
segment length S were decreased by unity in
order that these parameters would have mini-
mum values of zero rather than unity.

Because of the independence between the lat-
eral and longitudinal scales in the simulation

30 T —

o =

r o) ]
E [ 0% o b
“~Notural Streams |

o)

Sr Simulaﬁ\oy
®

Fig. 4. Comparison of the ratio N-S/L for
natural and simulated streams, plotted versus E.
Symbols are explained in the notation.
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models, dimensionless ratios involving both chan-
nel width and segment length vary greatly with
changes in either the step width or the bias. The
effects of variations in both parameters was in-
vestigated only for model 1 (Figure 5). For a
given step width but different biases the dimen-
sionless parameters vary systematically with the
excess segment index, and the curves for differ-
ent step widths are generally parallel (Figure
5). The slopes of these relationships for model 1
are generally close to those of natural stream
networks except at low values of E,; (the inter-
cepts of these curves are unimportant, for they
depend upon the entirely arbitrary choice of
longitudinal and lateral scales). The break in
the relationships plotted in Figure 5 for model
1 is probably due to the limiting of segment
lengths to values of one generation or greater,
because a smaller break occurs for higher values
of the step width (which correspond to longer
average segment lengths).

The remaining models (2 and 4) were investi-
gated only at a step width of 3.0. Model 2 ap-
pears to simulate most closely braiding in nat-
ural streams, for the relationships between the
excess segment index and other dimensionless
parameters are approximately linear (on loga-
rithmic paper) and the slopes of the relation-
ships are very close to the regressions obtained
between natural streams (Figure 5). The more
restricted rules for channel splitting, which lead
to longer average segment lengths, probably ac-
count for this better fit to natural data.

Although the choice of step width for the sim-
ulation models is arbitrary, the use of large step
widths not only produces better simulations of
natural braiding, but it also allows the simula-
tion of streams with lower values of the excess
segment index. In the limiting case of very high
biases, simulated streams consist of long single
segments alternating with two-channel sections
that extend only one generation longitudinally.
In this case, the minimum obtainable excess seg-
ment index can be predicted (Figure 6). These
predicted values compare closely with the mini-
mum values actually obtained in the simulations
(Figures 5 and 6).

The variance in the number of segments in
lateral cross sections (Var E) is nearly identical
for natural and simulated networks having the
same excess segment index (Figure 5). This sup-
ports the supposition that the variance in the
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number of segments in a downstream direction
may be accounted for by small-scale fluctuations
in flow conditions in the channel rather than by
systematic changes of local factors. The few nat-
ural streams with abnormally large variance
may, however, be affected by large-scale factors
within the measured reach.

The length of links in digital simulations of
dendritic stream networks approximately follows
a geometrical distribution [Smart et al., 1967;
Howard, 1971]. The length of links in natural
streams is close to an exponential distribution
[Smart, 1968], which is the continuous equiva-
lent of the geometrical distribution, although the
gamma distribution appears to give a slightly
better fit [Shreve, 1969; James and Krumbein,
1969]. The distribution of braid lengths in nat-
ural and simulated networks might also follow
these simple distributions. One test for the close-
ness of approximation of the geometrical and
exponential distribution to simulated and nat-
ural braid lengths, respectively, is to see whether
the mean and variance are related as with these
distributions.

Under the geometric distribution the variance
divided by the mean times the mean minus one
should be equal to unity; similarly for the ex-
ponential distribution the variance divided by
the square of the mean should be unity. The
geometrical distribution seems to fit the simu-
lated braid lengths very well except that the
variance is too great when braiding is weak
(low E,, Figure 5). This is due to a contrast
between long segments in the single-channel sec-
tions and short segments where the channel
splits. A similar pattern is found in natural
streams with respect to the exponential distribu-
tion, except that the variance may be too low
for highly braided streams (Figure 5), perhaps
because of operator bias in definition or mea-
surement of segment lengths.

Although the numerical relationships for the
simulation model are similar to those of natural
braided streams, the process of generation is ob-
viously not comparable. In natural streams the
braided pattern develops and changes through
time simultaneously along the length of the
channel, whereas in the simulated streams the
braiding is developed sequentially in the longi-
tudinal direction. Once a pattern is formed in
the simulation, it is no longer modified. Probably
a large number of random models might satis-
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Fig. 5. Numerical properties of natural braided streams compared with simulated ones,
plotted versus the excess segment index E:. Mean values for individual natural streams are
indicated by circles with the regression lines for both axes considered as independent variables
in turn. Like symbols for simulation models indicate separate simulations with the same step
width but different biases.
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Fig. 6. Predicted minimum values of the excess
segment index E¢, as a function of the step width.
The minimum values obtain for large biases. If S
is the probability of zero lateral steps in the simu-
lation model, then the probability P of splitting of
a single stream at the end of any generation is
25(1 — 8) 4 %(1 — 8)% in models 1, 3, and 4, and
S(1 — 8) 4+ %(1 — 8)% in model 2. Since each
generation of a single stream is independent, the
distribution of single stream lengths is geometric
with mean 1/P. The excess segment index pro-
duced by single channels alternating with single
generation islands will therefore be [(1/P) 4 21/
[(1/P) 4 11 — 1 (plotted).

factorily simulate the numerical properties of
braided streams without necessarily simulating
the actual process of generation., For example,
the rules for splitting and coalescence of chan-
nels (Figure 3) could be extensively modified. A
similar situation exists for simulation models of
dendritic stream networks [Howard, 1971].

NOTATION
Parameters measured for each stream section:

E, average number of segments bisected by the

crosslines at the ends and interior of the

section;

S, average length of all segments entirely within

the section and those entering the section

from a lower numbered section in miles;

total number of segments entirely within the

section and entering the section from a lower

numbered section;

average width of the widest channel through

the section in miles;

C, average width of the stream between the
outermost segments within the section in
miles;

L
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G, stream gradient in feet per feet;
L, length of the section in miles.

Parameters measured only once for each stream:

U, sinuosity of the widest channel that can be
followed along the stream, i.e., the ratio of
the length along the channel to the straight
line distance between the ends of the
measured length of stream;

average wavelength, in miles, of the widest
channel that can be followed along the
stream, measured as the average crest to
crest length.

Derivative scale free parameters:

E; = E — 1, excess segment index;
U; = U — 1, sinuosity index;

R., = (C/M) — 1, width ratio index;
R,, = 8/M, segment length-width
ratio;

R,. = 8/C, segment length-channel
width ratio;
Rym = W/M, wavelength-segment
width ratio;
R,. = W/C, wavelength-channel
width ratio;
R,, = W/8, wavelength-segment

length ratio;
T, =[N — 1)-M]/L, segments per segment
: width unit;
T, = [(N — 1)-C]/L, segments per channel
width unit;
segments per segment
length unit;
segments per wavelength
unit.

T, = [ - 1)-8)/L,
Te = N - 1)-W]/L,

Derivative dimensioned parameters:
N; = (N — 1)/L, segments per mile of channel.
Hydraulic parameters:

Qf 3

R,

mean annual flood in cubic feet per second;
ratio of the mean annual flood to the mean
annual discharge;

D, median grain size of the channel bed in
millimeters.
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